亚辰电子首页 福禄克Fluke 德图Testo 雷泰Raytek 共立kyoritsu 保珈玛Programma 胜利victor 欧普士Optris 泰仕TES 优利德UNI-T
VM63a 测振仪 Testo876红外热像仪 608-H2温湿度表 ST-86la屏幕亮度计 testo 184 H1温/湿度记录仪 FLUKE376钳型表 testo330-1LL烟气分析仪 Fluke754过程校准仪
服务热线: 0755-83368633 83048316  83048326   
主营仪器仪表分类
品牌导航  
热销品牌: 菲力尔Flir   福禄克Fluke  共立KYORITSU  雷泰Raytek 德图testo  胜利Victor  欧普士Optris 密析尔 欧普兰 北师大光电
 产品分类

 最新产品
 Fluke VT08 轻便型红外热像仪
 Fluke 1770 系列三相电能质量分析仪
 Fluke ii900工业声学成像仪
 Fluke IRR1 SOL 太阳光辐照度计
 Fluke 87V MAX 真有效值数字万用表
 海康威视双光谱网络中载云台
 海康威视热成像双光谱防爆筒机
 海康威视双光谱测温防爆云台
 海康威视双光谱8寸球机
 专业型黑体(海康)
 红外测温仪工作原理及应用

红外测温仪工作原理及应用
来源:亚辰电子   发布时间:5月8日   查看次数:504次
了解红外测温仪的工作原理、技术指标、环境工作条件及操作和维修等是用户正确地选择和使用红外测温仪的基础。 ->r udR Q
1 k!$ #1d<
一、红外测温仪工作原理
kJ "}JRA<
@m+FAdA 0
   红外测温仪由光学系统、光电探测器、信号放大器及信号处理、显示输出等部分组成。光学系统汇聚其视场内的目标红外辐射能量,视场的大小由测温仪的光学零件及其位置确定。红外能量聚焦在光电探测器上并转变为相应的电信号。该信号经过放大器和信号处理电路,并按照仪器内疗的算法和目标发射率校正后转变为被测目标的温度值。
Kv m XRf*z
O2S{ *D={
   在自然界中,一切温度高于绝对零度的物体都在不停地向周围空间发出红外辐射能量。物体的红外辐射能量的大小及其按波长的分布 —— 与它的表面温度有着十分密切的关系。因此,通过对物体自身辐射的红外能量的测量,便能准确地测定它的表面温度,这就是红外辐射测温所依据的客观基础。
X u& v3Y~k
  黑体是一种理想化的辐射体,它吸收所有波长的辐射能量,没有能量的反射和透过,其表面的发射率为 1 。但是,自然界中存在的实际物体,几乎都不是黑体,为了弄清和获得红外辐射分布规律,在理论研究中必须选择合适的模型,这就是普朗克提出的体腔辐射的量子化振子模型,从而导出了普朗克黑体辐射的定律,即以波长表示的黑体光谱辐射度,这是一切红外辐射理论的出发点,故称 黑体辐射定律 。所有实际物体的辐射量除依赖于辐射波长及物体的温度之外,还与构成物体的材料种类、制备方法、热过程以及表面状态和环境条件等因素有关。因此,为使黑体辐射定律适用于所有实际物体,必须引入一个与材料性质及表面状态有关的比例系数,即发射率。该系数表示实际物体的热辐射与黑体辐射的接近程度,其值在零和小于 1 的数值之间。根据辐射定律,只要知道了材料的发射率,就知道了任何物体的红外辐射特性。影响发射率的主要因纱在:材料种类、表面粗糙度、理化结构和材料厚度等。
&uXu$)IZ
  当用红外辐射测温仪测量目标的温度时首先要测量出目标在其波段范围内的红外辐射量,然后由测温仪计算出被测目标的温度。单色测温仪与波段内的辐射量成比例;双色测温仪与两个波段的辐射量之比成比例。
Xp~O?2:3 l
e_dsB mT h
二、正确选择红外测温仪
# 66 vk f*
  随着技术和不断发展,红外测温仪最佳设计和新进展为用户提供了各种功能和多用途的仪器,扩大了选择余地。在选择测温仪型号时应首先确定测量要求,如被测目标温度,被测目标大小,测量距离,被测目标材料,目标所处环境,响应速度,测量精度,用便携式还是在线式等等;在现有各种型号的测温仪对比中,选出能够满足上述要求的仪器型号;在诸多能够满足上述要求的型号中选择出在性能、功能和价格方面的最佳搭配。其他选择方面,如使用方便、维修和校准性能等。
#Ti5G " C
G$1gk^G's
1 、确定测温范围
[ Y8ot- 6
Z qfoO!Ta
  确定测温范围:测温范围是测温仪最重要的一个性能指标。每种型号的测温仪都有自己特定的测温范围。如 Raytek (雷泰)产品覆盖范围为 -50 ℃ - +3000 ℃ ,但这不能由一种型号的红外测温仪来完成。因此,用户的被测温度范围一定要考虑准确、周全,既不要过窄,也不要过宽。根据黑体辐射定律,在光谱的短波段由温度引起的辐射能量的变化将超过由发射率误差所引起的辐射能量的变化,因此,测温时应尽量选用短波较好。一般来说,测温范围越窄,监控温度的输出信号分辨率越高,精度可靠性容易解决。测温范围过宽,会降低测温精度。例如,如果被测目标温度为 1000 摄氏度,首先确定在线式还是便携式,如果是便携式。满足这一温度的型号很多,如 3iLR3 , 3i2M , 3i1M 。如果测量精度是主要的,最好选用 2M 或 1M 型号的,因为如果选用 3iLR 型,其测温范围很宽,则高温测量性能便差一些;如果用户除测量 1000 摄氏度的目标外,还要照顾低温目标,那只好选择 3iLR3 。
*wV` 7\@
rQ& F Gb
2 、确定目标尺寸
9On(b|mT
A#C GD0T
  为了获得精确的温度读数,测温仪与测试目标之间的距离必须在合适的范围之内,所谓 “ 光点尺寸 ” ( spot size )就是测温仪测量点的面积。您距离目标越远,光点尺寸就越大。
&I?d(Z=:\
  红外测温仪根据原理可分为单色测温仪和双色测温仪(辐射比色测温仪)。对于单色测温仪,在进行测温时,被测目标面积应充满测温仪视场。建议被测目标尺寸超过视场大小的 50% 为好。如果目标尺寸小于视场,背景辐射能量就会进入测温仪的视声符支干扰测温读数,造成误差。相反,如果目标大于测温仪的视场,测温仪就不会受到测量区域外面的背景影响。对于比色测温仪,其温度是由两个独立的波长带内辐射能量的比值来确定的。因此当被测目标很小,不充满视场,测量通路上存在烟雾、尘埃、阻挡对辐射能量有衰减时,都不会对测量结果产生影响。甚至在能量衰减了 95% 的情况下,仍能保证要求的测温精度。对于细小而又处于运动或震动之中的目标,比色测温仪是最佳选择。这是由于光线直径小,有柔性,可以在弯曲、阻挡和折叠的通道上传输光辐射能量,因此可以测量难以接近、条件恶劣或靠近电磁场的目标。
XZ _vbYTj
WxS$ yUu
3 、确定距离系数(光学分辨率)
,{g B$8z^
5db9 C}0
  距离系数由 D : S 之比确定,即测温仪探头到目标之间的距离 D 与被测目标直径之比。光学分辨率越高,即增大 D : S 比值,测温仪的成本也越高。如果测温仪由于环境条件限制必须安装在远离目标之处,而又要测量小的目标,就应选择高光学分辨率的测温仪。对于固定焦距的测温仪,在光学系统焦点处为光斑最小位置,近于和远于焦点位置光斑都会增大。存在两个距离系数。因此,为了能在接近和远离焦点的距离上准确测温,被测目标尺寸应大于焦点处光斑尺寸,变焦测温仪有一个最小焦点位置,可根据到目标的距离进行调节。增大 D : S ,接收的能量就减少,如不增大接收口径,距离系数 D : S 很难做大,这就要增加仪器成本。
7 =pJ)4;ZA
6 F 08$,%Y
4 、确定波长范围
o |c %uw
h0Ilxa
  目标材料的发射率和表面特性决定测温仪的光谱相应波长对于高反射率合金材料,有低的或变化的发射率。在高温区,测量金属材料的最佳波长是近红外,可选用 0.8 ~ 1.0μm 。其他温区可选用 1.6μm,2.2μm 和 3.9μm 。由于有些材料在一定波长上是透明的,红外能量会穿透这些材料,对这种材料应选择特殊的波长。如测量玻璃内部温度选用 1.0μm , 2.2μm 和 3.9μm (被测玻璃要很厚,否则会透过)波长;测玻璃表面温度选用 5.0μm ;测低温区选用 8 ~ 14μm 为宜。如测量聚乙烯塑料薄膜选用 3.43μm ,聚酯类选用 4.3μm 或 7.9μm ,厚度超过 0.4mm 的选用 8-14μm 。如测火焰中的 CO 用窄带 4.64μm ,测火焰中的 NO2 用 4.47μm 。
U$AV"F&!&}
1|3 {.E d
5 、确定响应时间
kac ]Rh8vO
d 9 yf SZ
  响应时间定义为到达最后读数的 95% 能量所需要的时间,表示红外测温仪对被测温度变化的反应速度,它与光电探测器、信号处理电路及显示系统的时间常数有关。红外测温仪响应时间的选择要和被测目标的情况相适应,确定响应时间主要根据目标的运动速度和目标的温度变化速度。如果目标的运动速度很快或测量快速加热的目标时,要选用快速响应红外测温仪,否则达不到足够的信号响应,会降低测量精度。然而,并不是所有应用都要求快速响应的红外测温仪。对于静止的或目标热过程存在热惯性时,响应时间就可以放宽要求了。
b%D} mxbS
6@cT;=W;xj
6 、信号处理功能
8Zv ozQE
J# j x)K!
  鉴于离散过程(如零件生产)和连续过程不同,所以要求红外测温仪具有多信号处理功能(如峰值保持、谷值保持、平均值)可供选用,如测温传送带上的瓶子时,就要用峰值保持,其温度的输出信号传送至控制器内。否则测温仪读出瓶子之间的较低的温度值。若用峰值保持,设置测温仪响应时间稍长于瓶子之间的时间间隔,这样至少有一个瓶子总是处于测量之中。
+6+!M_0w A
t P]-u3
7 、环境条件考虑
= R H7 j
4l`"P~= 2<
  测温仪所处的环境条件对测量结果有很大影响,应予考虑并适当解决,否则会影响测温精度甚至引起损坏。当环境温度高,存在灰尘、烟雾和蒸汽的条件下,可选用厂商提供的保护套、水冷却、空气冷却系统、空气吹扫器等附件。这些附件可有效地解决环境影响并保护测温仪,实现准确测温。在确定附件时,应尽可能要求标准化服务,以降低安装成本。当在噪声、电磁场、震动或难以接近环境条件下,或其他恶劣条件下,烟雾、灰尘或其他颗粒降低测量能量信信号时,光纤双色测温仪是最佳选择。在噪声、电磁场、震动和难以接近的环境条件下,或其他恶劣条件时,宜选择光线比色测温仪。在密封的或危险的材料应用中(如容器或真空箱),测温仪通过窗口进行观测。材料必须有足够的强度并能通过所用测温仪的工作波长范围。还要确定操作工是否也需要通过窗口进行观察,因此要选择合适的安装位置和窗口材料,避免相互影响。
EG3 ?C
QeZ K&^W
在低温测量应用中,通常用 Ge 或 Si 材料作为窗口,不透可见光,人眼不能通过窗口观察目标。
si.w1
如操作员需要通过窗口目标,应采用既透红外辐射又透过可见光的光学材料,如 ZnSe 或 BaF2 等作为窗口材料。
|Z uS"'3_w
当测温仪工作环境中存在易燃气体时,可选用本征安全型红外测温仪,从而在一定浓度的易燃气体环境中进行安全测量和监视。
1 X j>kE:
在环境条件恶劣复杂的情况下,可以选择测温头和显示器分开的系统,以便于安装和配置。
-k I;yL
E ) iEWc
三、为什么使用红外测温仪
~v+ A6N:qC
_BP!{~ &;
   红外测温仪已被证实是检测和诊断电子设备故障的有效工具。可节省大量开支,用红外测温仪,你可连续诊断电子连接问题和通过查找在 DC 电池上的输出滤波器连接处的热点,以检测不间断电源( UPS )的功能状态,你可检验电池组件和功率配电盘接线端子,开关齿轮或保险丝连接,防止能源消耗;由于松的连接器和组合会产生热,红外测温仪有助于识别回路中断器的绝缘故障 . 或监视电子压缩机;日常扫描变压器的热点可探测开裂的绕组和接线端子。
V$' ;B=M
ql_ GN[c /
使用红外测温仪的好处
"fTW 2D74
6) _sv tg
便捷 红外测温仪可快速提供温度测量,在用热偶读取一个渗漏连接点的时间内,用红外测温仪几乎可以读取所有连接点的温度。另外由于红外测温仪坚实 . 轻巧,且不用时易于放在皮套中。在工厂巡视和日常检验工作时都可携带。
K k ?C
精确 红外测温仪通常精度都是 1 度以内。这种性能在做预防性维护时特别重要,如监视恶劣生产条件和将导致设备损坏或停机的特别事件时。用红外测温仪,你甚至可快速探测操作温度的微小变化,在其萌芽之时就可将问题解决,减少因设备故障造成的开支和维修的范围。
& W@ #p G
安全 红外测温仪能够安全地读取难以接近的或不可到达的目标温度 ,可以在仪器允许的范围内读取目标温度。非接触温度测量还可在不安全的或接触测温较困难的区域进行,精确测量就象在手边测量一样容易。
O h{ >xg
四、红外测温仪 在设备故障诊断时 的使用
lj w( cUM
@G&2Tbj[`
   设备故障红外诊断最核心的问题,是要求准确地获得被测设备的温度分布或故障相关部位温度值与温升值。这个温度信息不仅是判断设备有无故障的依据,也是判断故障属性、位置、严重程度的客观依据。因此,对被测设备故障相关部位温度的计算与合理修正,将是提高检测设备表面温度准确性的关键环节。然而在现场进行设备红外检测时,由于检测条件和环境的影响变化,可能导致同一设备因检测条件不同,而得到不同的结果。因此,为了提高红外检测的准确度,必须对现场检测过程中或对检测结果的分析处理中,采取相应的对策与措施或选择良好的检测条件,或对检测现场结果进行合理的修正。
f%2>pQTq@)
9J $"Qt5;6
运行状态的影响与对策
cU
电气设备故障无论是电流效应引起的发热故障 ( 导电回路故障 ) ,发热功率与负荷电流值的平方成正比。电压效应引起的发热故障 ( 绝缘介质故障 ) ,发热功率与运行电压的平方成正比。因此,设备的工作电压和负荷电流的大小,将直接影响到红外检测与故障诊断的效果。泄漏电流的增大,能造成高压设备部分电压不均匀。如果没有加载运行或者负荷很低,则会使设备故障发热不明显,即使存在较严重的故障,也不可能因特征性热异常的形式暴露出来。只有当设备在额定电压下运行,而且负荷越大时,发热及温升才越严重,故障点的特征性热异常也暴露得越明显。因此在进行红外检测时,为了能够取得可靠的检测效果,要尽量保证设备在额定电压和满负荷下运行,即使不能做到连续满负荷运行,也应编制一个运行方案,以便在检测前和检测过程中,能让设备满负荷运行一段时间 ( 如 4 ~ 6h) ,使设备故障部位有足够的发热时间,并保证其表面达到稳定温升。
+IkL=/';#
由于电气设备故障红外诊断时,故障判断标准往往是以设备在额定电流时的温升为依据,因此当检测时实际运行电流小于额定电流时,应该是现场实际测量的设备故障点温升换算为额定电流的温升。
z Z * \v
设备表面发射率的影响与对策
b Y^K)0+^s
任何红外测量仪器都是通过测量电气设备表面红外辐射功率,来获得设备温度信息的。并且在红外诊断仪器接收来自目标红外辐射功率相同的情况下,因目标的表面发射率不同,将会得到不同的检测结果。也就是说,相同辐射功率,发射率越低,就会显示越高的温度。因物体表面发射率主要决定于材料性质和表面状态 ( 如表面氧化情况,涂层材料,粗糙程度及污秽状态等 ) 。因此为了应用红外热像仪器准确地测量电气设备温度,必须要知道受检目标的发射率值,并将该值作为计算温度的重要参数输入计算机或者调整红外测量仪的ε修正值,以便对所测量的温度输出值进行发射率修正。消除发射率对检测结果影响的另外两种对策措施是:当使用红外热像仪进行测量时,要对发射进行修正,查出被测设备部件表面的发射率值进行发射率修正,从而获得可靠的测温结果,提高检测的可靠性;对于红外检测的故障频发设备部件,为使检测结果具有良好的可比性,可以运用敷涂适当漆料的方法来增大和稳定其发射率值,以便获得被测设备表面的真实温度。
\zMx ~-2oN
大气衰减的影响与对策
'n dX M
由于受检电气设备表面红外辐射能量,是经大气传输到红外检测仪器里的,这就会受到大气组合中的水蒸汽、二氧化碳、一氧化碳等气体分子的吸收衰减和空气中悬浮微粒的散射而衰减,设备辐射能量传输的衰减随着检测仪器到被测设备之间的距离,降低了被测设备辐射的透过率,所以其衰减是随距离的增大而增加,降低受检设备故障部位与正常部位的辐射对比度,也会因为红外仪器接收到的目标能量减少,使得仪器显示出来的温度低于被测故障点的实际温度值,从而造成漏检或误诊断。尤其对于检测温升较低的设备故障时,这是很不利的。检测距离增大,大气组合的影响将会越来越大。而且又要获得目标温度准确性,必须采取如下对策:尽量选择在环境大气比较干燥、洁净的时节进行检测;在不影响安全的条件下尽可能缩短检测距离,还要对温度测量结果进行合理的距离修正,以便测得实际温度值。
'i5 ,2vT0
气象条件的影响
aP }30 E*Y
不良的气象环境(雨、雪、雾及大风力等),会对设备温度检测带来不利的影响,往往会给出虚假的故障现象。为了减少气象条件的影响,尽量在无雨、无雾、无风和环境温度较稳定的夜晚进行检测。
e]k\dj;,^%
环境及背景辐射的影响与对策
l1u v]t <
在进行户外电力设备红外检测时,检测仪器接收的红外辐射除了包括受检设备相应部位自身发射的辐射以外,还会包括设备其他部位和背景的反射,以及直接射入太阳辐射。这些辐射都将对设备待测部位的温度造成干扰,对故障检测带来误差。为了减少环境与背景辐射的影响,应采取如下对策措施:
<R.Ipyt.
0 M a 3
对户外电气设备的现场红外检测,尽可能选择在阴天或者在日落左右傍晚无光照时间进行。这样可以防止直接入射、反射和散射的太阳辐射影响,对户内设备可以采用关掉照明灯,以及要避开其他的辐射影响。
qku}cWD9/_
对于高反射的设备表面,应该采取适当措施来减少对太阳辐射及周围高温物体辐射的影响。或者改变检测角度,找到能避开反射的最佳角度进行检测。
gv}J "a nD
为减少太阳辐射及周围高温背景的辐射影响,可在检测时采取适当的遮挡措施,或者在红外热像仪器上加装适当的红外滤光片,以便滤除太阳及其他背景辐射。
7I;A5 f
选择参数适宜的仪器和检测距离进行检测,使受检测的设备部位充满仪器视场,从而减少背景辐射的干扰.
 友情链接:  亚辰仪器仪表网 红外热像仪 红外测温仪 烟气分析仪 硬度计 智能电磁流量计 大电流电感
联系电话:(0755) 83368633(15线) 传真:(0755) 83048230
地址: 深圳市宝安区海天路21号前海华寓A座28E 邮箱: Lisa@yachen.com.cn
CopyRight2006-2016 深圳市亚辰电子科技有限公司© All Rights Reserved!
粤ICP备14030921号-5